Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells.
نویسندگان
چکیده
Ex vivo amplification of human hematopoietic stem cells (HSC) without loss of their self-renewing potential represents an important target for transplantation, gene and cellular therapies. Valproic acid is a safe and widely used neurologic agent that acts as a potent inhibitor of histone deacetylase activities. Here, we show that valproic acid addition to liquid cultures of human CD34+ cells isolated from cord blood, mobilized peripheral blood, and bone marrow strongly enhances the ex vivo expansion potential of different cytokine cocktails as shown by morphologic, cytochemical, immunophenotypical, clonogenic, and gene expression analyses. Notably, valproic acid highly preserves the CD34 positivity after 1 week (range, 40-89%) or 3 weeks (range, 21-52%) amplification cultures with two (Flt3L + thrombopoietin) or four cytokines (Flt3L + thrombopoietin + stem cell factor + interleukin 3). Moreover, valproic acid treatment increases histone H4 acetylation levels at specific regulatory sites on HOXB4, a transcription factor gene with a key role in the regulation of HSC self-renewal and AC133, a recognized marker gene for stem cell populations. Overall, our results relate the changes induced by valproic acid on chromatin accessibility with the enhancement of the cytokine effect on the maintenance and expansion of a primitive hematopoietic stem cell population. These findings underscore the potentiality of novel epigenetic approaches to modify HSC fate in vitro.
منابع مشابه
Effects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science
Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...
متن کاملEpigenetic reprogramming induces the expansion of cord blood stem cells.
Cord blood (CB) cells that express CD34 have extensive hematopoietic capacity and rapidly divide ex vivo in the presence of cytokine combinations; however, many of these CB CD34+ cells lose their marrow-repopulating potential. To overcome this decline in function, we treated dividing CB CD34+ cells ex vivo with several histone deacetylase inhibitors (HDACIs). Treatment of CB CD34+ cells with th...
متن کاملHistone Deacetylase Inhibitor Valproic Acid Promotes the Differentiation of Human Induced Pluripotent Stem Cells into Hepatocyte-Like Cells
In this study, we aimed to elucidate the effects and mechanism of action of valproic acid on hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. Human induced pluripotent stem cells were differentiated into endodermal cells in the presence of activin A and then into hepatic progenitor cells using dimethyl sulfoxide. Hepatic progenitor cells were ma...
متن کاملHistone deacetylase inhibitor treatment downregulates VLA-4 adhesion in hematopoietic stem cells and acute myeloid leukemia blast cells.
The alpha4beta1 integrin very late activation antigen-4 (VLA-4) is an alpha4 (CD49d)/beta1 (CD29) heterodimer. It plays a key role in the adhesion of both hematopoietic progenitor cells and leukemic blast cells to bone marrow stromal cells which express the vascular cell adhesion molecule-1 (VCAM-1) or produce fibronectin. VLA-4 expression has been associated with bone-marrow minimal residual d...
متن کاملEffect of histone deacetylase inhibitor valproic acid on progenitor cells of acute myeloid leukemia.
Histone deacetylase inhibitor valproic acid (VPA) was recently shown to enhance proliferation and self-renewal of normal hematopoietic stem cells, raising the possibility that VPA may also support growth of leukemic progenitor cells (LPC). Here, VPA maintains a significantly higher proportion of CD34+ LPC and colony forming units compared to control cultures in six AML samples, but selectively ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 4 شماره
صفحات -
تاریخ انتشار 2005